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Abstract
In this letter, it is pointed out that an ideal universal equation of state (EOS)
of solids should have four merits. The EOS corresponding to the generalized
Lennard-Jones (GLJ) potential is derived. It is pointed out that the GLJ EOS is
not volume analytic, as the exponents contained in the potential function take
arbitrary values. On making the exponents satisfy a relationship, the GLJ EOS
becomes volume analytic with two parameters (mGLJ EOS), and has all four
merits. By applying six EOSs in investigating 50 materials, it is shown that the
mGLJ EOS gives the best results.

The equation of state (EOS) of a system describes the relationships among thermodynamic
variables such as pressure, temperature, and volume. It provides numerous pieces of
information relating to the non-linear compression of a material at high pressure, and has
been widely applied in engineering and other scientific research. Recently, rapid advances
in computational capabilities and accurate high pressure experimental techniques have given
a strong impetus to theoretical work. Significant progress has been achieved over the past
few years as regards describing the properties of condensed matter in terms of universal
relationships involving a small number of parameters—especially since the 1986 Rose et al [1]
proposal that there is a universal EOS (UEOS) valid for all kinds of solids that can be obtained
through analysing the energy band data; a lot of forms of UEOSs have been proposed, with
varying success [2–17].

Among these EOSs, the Vinet EOS [2] has been shown to have fairly high precision [7].
The Vinet EOS can provide a simple analytic expression for the cohesive energy, an important
merit. Recently, Baonza et al [8–13] proposed another EOS from a pseudospinodal hypothesis;
they claimed that the EOS has high precision, equivalent to that of the Vinet EOS. But Brosh et al
[15] pointed out that the pseudospinodal hypothesis is not necessary for deriving the Baonza
EOS, and the EOS cannot even meet the strict spinodal condition. Holzapfel et al [16, 17]
pointed out that the limiting condition for an EOS at high pressure should be the Thomas–
Fermi (TF) model [18–20]. Since most existing EOSs cannot satisfy the limiting condition,
they modified the Vinet EOS to satisfy the TF limitation [16, 17] (the Holzapfel EOS). However,
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recently, we proposed two Murnaghan-type EOSs [21], and compared the precision of the five
EOSs mentioned above by fitting the experimental compression data for 50 solids. The results
show that EOSs satisfying the TF limitation give worse results than other EOSs not satisfying
the TF limitation. For practical applications, the TF limiting condition is not important, for it
only operates as the volume tends to zero.

We consider that, except for the TF limiting condition, for practical applications, an ideal
universal EOS should have the following four merits. The first one is that the energy should
be analytic, U = U(V ). The second one is that the EOS should be both pressure analytic,
P = P(V ), and volume analytic, V = V (P). The third one is that it should satisfy the
following spinodal condition [15]:

B ∝ (P − Psp)
1/2, with B(P = Psp) = 0, (1)

have the correct limit as volume tends to infinity, P(V → ∞) = 0, and be applicable to
expanded materials, including expanded liquids and solids. The fourth one is that it should
have high enough precision with a simple form and a small number of parameters, and allow
one to predict the compression curve for materials at high pressure using only the parameters
determined from experimental data at low pressure.

Now we explain in more detail what is practical value of the spinodal condition is and
why the volume analyticity is a valuable property. First of all, we should point out that, in
recent years, the universal EOSs have not been limited solely to just solids or just liquids.
This means that an EOS initially proposed for solids might be applied by some researchers
to compressed liquids, and vice versa. For example, the Vinet, KD, and Baonza EOSs have
been applied both to solids [1, 2, 4, 7, 11–13] and liquids [5, 8–10, 22]. Brosh et al [15]
explained the physical meaning of the spinodal condition for liquids. They pointed out that
the EOS for expanded fluids has been less studied and the general form of the EOS is not well
established. The spinodal is a locus in the P–V diagram of compressed liquids, which is the
limit of metastability of a substance with respect to a phase transition. In principle, the spinodal
can be detected by experiments in the metastable region, but in practice such experiments are
extremely difficult. Instead, efforts have been made to locate the spinodal by extrapolation
from the stable region of the phase diagram. So an EOS satisfying the spinodal condition is
useful to the research on expanded liquids. As for solids, in recent years, researchers have
been very interested in porous materials [23–32]. These materials were usually studied using
shock wave experiments. In such conditions, we consider very wide density ranges, varying
from expanded regions to high compression regions. In many theories for porous materials, the
thermodynamic equations of a bulk material are necessary, and an EOS satisfying the spinodal
condition may have some advantages [23–32].

We also consider that volume analyticity is a valuable property. For liquids, the direct
determination of EOS at high pressure is very difficult for the compression experiment and
is far more difficult for a liquid than for a solid. So researchers would normally determine
the EOS of a liquid by using other methods. Because the variation of the sound velocity
versus pressure in liquids can be easily measured with high precision, many researchers have
developed an EOS for liquids in terms of the sound velocity [33–41]. For example, Vinet
and KD EOSs have been used on this basis [5, 22]. However, the Vinet EOS is not volume
analytic, so in order to apply the Vinet EOS for liquid metals, Schlosser et al have separately
developed V –P and B–P equations [22]. We consider such an approach is not consistent.
However, if one uses volume analytic EOSs to do such research, the inconsistency can be
naturally avoided [5]. And for solids, in the research on porous materials, researchers found
it more convenient to use the pressure variable than the volume [23–32], and some theories
have been developed. For example, the Wu–Jing equation [24–28] has been shown to have
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the ability to describe properties of porous materials over the wide pressure and temperature
ranges. For these theories, the volume analytic EOS of a bulk solid is the foundation [23–32].

Up to now, we have not found an EOS having all four merits. Most present EOSs have
various disadvantages. For example, although the Vinet EOS is energy and pressure analytic,
it is not volume analytic, and its precision is lower than that of the Baonza EOS [21]. Although
the Baonza EOS is pressure and volume analytic, it is not energy analytic, and cannot satisfy the
spinodal condition [8–13, 15] as it has been derived by integrating the following relationship
rather than equation (1), B ∝ (P − Psp)

0.85, and is inapplicable to expanded materials.
The Holzapfel EOS is just pressure analytic, and is not energy and volume analytic, and
its precision is the worst [21]. The precision of the two-parameter Murnaghan EOS proposed
by us (designated the SMnh EOS) is equivalent to that of the Vinet EOS; it is energy, pressure
and volume analytic, but it cannot satisfy the spinodal condition. Midha and Nanda [42] have
used an EOS based on the LJ 12–6 potential to study the properties of metals at zero pressure.
But the LJ 12–6 EOS only contains one parameter and it cannot be applied to materials at high
pressure, although it is energy and pressure analytic; it has all disadvantages corresponding to
other merits mentioned above [42].

In this letter, we propose a two-parameter EOS based on the generalized Lennard-Jones
(GLJ) potential, which can have all the merits mentioned above, except fulfilling the TF
limitation condition. The GLJ potential is as follows [43–45]:

ε(r) = ε0

m1 − n1

[
n1

(
re

r

)m1

− m1

(
re

r

)n1
]

. (2)

If we adopt the nearest neighbour assumption, the total energy of a solid is

U = Nδε0
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where a is the nearest neighbour distance, V = a3/γ , V0 = (re)
3/γ , and δ and γ are structure

constants [44, 45]. B0 and B ′
0 are the bulk modulus and its first-order pressure derivative at

zero pressure, B0 = (m1n1 Nδε0)/(18V0).
It should be pointed out that in equation (3) one could use an all-neighbour model to

replace the nearest neighbour model, and the Madelung factor accounting for the sum of all
distant neighbourparticles could be used here without changing the analytic form of the energy.
However, we can introduce new parameters V0 and B0, and the form of the final equations is
completely the same as in the nearest neighbour model. So we just use the nearest neighbour
model without loss of generality. The EOS can be derived by the differentiation of equation (3)
with respect to volume. The result is

P = 3B0

(m1 − n1)

[(
V0

V

)m1/3+1

−
(

V0

V

)n1/3+1
]

. (4)

It should be pointed out that equation (4) is energy and pressure analytic, but it is not
volume analytic for arbitrary values of exponents m1 and n1, even for the case of the LJ 12–6
potential [42] with m1 = 12 and n1 = 6. In order to obtain an EOS that is volume analytic, we
consider that the exponents in equation (4) should satisfy the condition m1/3+1 = 2(n1/3+1),
and we should take

n1/3 + 1 = n, m1/3 + 1 = 2n. (5)
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Equation (5) gives the volume analytic condition. It decreases the number of independent
parameters in equation (4) from three to two. This may reduce the potential accuracy of fits
to the isothermal data. However, the precision of an EOS is not always in proportion to the
number of parameters contained in the EOS. For example, the KD EOS is a three-parameter
EOS but its precision is just equivalent to that of the two-parameter Baonza EOS and lower
than that of the mGLJ EOS developed in this letter. And we have made some comparative
calculations using the three-parameter LJ-type EOS; the results show little improvement as
compared with using the two-parameter mGLJ EOS.

Substitution of equation (5) into equations (3) and (4) yields

U = B0V0

n

(
V0

V

)n−1 [
(2n − 1)−1

(
V0

V

)n

− (n − 1)−1

]
(6)

P = B0

n

(
V0

V

)n [(
V0

V

)n

− 1

]
(7)

n = 1
3 B ′

0. (8)

Equation (7) is just the two-parameter EOS we proposed (mGLJ EOS). It can be shown to have
almost all of the merits mentioned above, and the precision is higher than those for several
popular EOSs. Equation (7) can be easily converted to the volume analytic form

(
V0

V

)n

= 1

2

(
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√
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4n P
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)
. (9)

The bulk modulus is

B = −V
∂ P

∂V
= B0

(
V0

V

)n [
2

(
V0

V

)n

− 1

]
. (10)

We notice that equations (7), (9) and (10) are simpler than most EOSs in the literature [2–17],
including Vinet, Baonza, and KD EOSs; they are fairly convenient for practical applications.

We can verify that equation (7) satisfies the spinodal condition of equation (1). The
spinodal volume Vsp can be determined from the equation B(V = Vsp) = 0; the spinodal
pressure Psp can be determined by substituting Vsp into equation (7). We have(

V0

Vsp

)n

= 1

2
, Psp = − B0

4n
(11)

substituting equation (9) into (10), and using equation (11), equation (10) changes to

B = 2n[(−Psp)
1/2 + (P − Psp)

1/2](P − Psp)
1/2. (12)

Thus it has been shown that equation (7) strictly satisfies the spinodal condition. It is interesting
to note that Hama and Suito [7] divided all EOSs into three types: the derivative form, the
volume integral form, and the pressure integral form. However, equation (7) belongs to all
three types. Also, equation (12) can be generalized to the following form:

B = f ((P − Psp)
1/2)(P − Psp)

1/2 (13)

where f (x) is an analytic function. The integration of equation (13) in terms of the definition
of the bulk modulus in equation (10) yields

V0

V
=

∫ P

0

dP

f ((P − Psp)1/2)(P − Psp)1/2
= 2

∫ √
P−Psp

√−Psp

dx

f (x)
. (14)

By using equation (14), we can develop EOSs with other forms and strictly satisfying the
spinodal condition.
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Figure 1. Relative error (�% = (Pcal − Pexp)/Pexp × 100%) comparison of six EOSs for Cu and
Au. �: Vinet; ×: Holzapfel; +: Baonza; �: KD; �: SMnh; ♦: mGLJ.

In this letter we investigate six EOSs: the Vinet [2], Holzapfel [16, 17], Baonza [8–13],
KD [4, 5], SMnh [21] EOSs and the mGLJ EOS in equation (7). The KD EOS is a three-
parameter equation, while the other EOSs are two-parameter equations. We have applied the
six EOSs to investigate 50 materials. All experimental data for V (P, T0)/V (0, T0) are taken
from Kennedy and Keeler [46], except for W [47] and NaCl [48]. The average fitting errors
for the pressure (P = f (V )) have been listed in table 1. The experimental data for V0 and the
fitted parameters B0, B ′

0 for the mGLJ EOS have been listed in table 2. The values of B0, B ′
0

for the KD EOS are from [49]; for other EOSs we refer to [21].
Table 1 shows that the mGLJ EOS gives the best results, with the average error 0.603%;

the Baonza and KD EOSs give slightly inferior results with average errors of 0.681% and
0.679%, respectively. Although the Holzapfel EOS strictly satisfies the limiting condition at
high pressure, the average fitting error reaches 0.851%, which is the worst one. The Vinet and
SMnh EOSs give equivalent results with average errors of 0.756% and 0.755%, respectively.
In figures 1 and 2, we give the error comparison of the six EOSs for four typical materials, Cu,
Au, Al, and Tl. It can be seen that the mGLJ EOS gives the best results for Cu, Au, and Tl,
the Vinet EOS gives the best results for Al, and the mGLJ EOS gives the second worst results.
The trend is in agreement with the results on total average errors in table 1.

It should be pointed out that researchers usually consider that inverse power potentials
are typically too stiff for fitting real compressed solids, but we consider that the situation may
change for some cases. This is because inverse power potentials also have many different
forms. We consider that we have three typical cases. The first case is that of the potential
corresponding to the Murnaghan EOS:
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Table 1. Average fitting errors for the pressure (�p%) when using six universal equations of
state: Vinet [2], Holzapfel (designated Hlzpf) [16, 17], Baonza [8–13], KD [4, 5], two-parameter
Murnaghan-type, proposed by us [43] (designated SMnh), and mGLJ, from equation (7).

Pressure Vinet Hlzpf Baonza KD SMnh mGLJ

No Solids GPa �p (%) �p (%) �p (%) �p (%) �p (%) �p (%)

1 Cu 0–450 1.050 0.743 0.676 0.90 0.664 0.603
2 Mo 0–350 1.468 1.510 1.507 1.44 1.220 1.039
3 W 0–270 0.239 0.406 0.483 0.26 0.318 0.248
4 Zn 0–250 1.147 0.937 0.670 0.68 0.398 0.323
5 Ag 0–200 0.821 0.660 0.617 0.79 0.503 0.409
6 Pt 0–200 1.046 1.003 1.053 1.00 0.872 0.704
7 Ti 0–200 0.590 1.001 0.763 0.82 1.091 0.811
8 Ta 0–180 0.932 0.972 0.838 0.81 0.918 0.718
9 Au 0–180 0.938 0.890 0.957 0.98 0.949 0.648

10 Pd 0–160 1.059 1.057 1.111 1.14 0.896 0.723
11 Zr 0–140 0.689 1.314 0.620 0.62 0.869 0.653
12 Cr 0–120 1.586 1.645 1.655 1.62 1.650 1.108
13 Co 0–120 0.951 1.107 0.957 0.95 0.968 0.757
14 Ni 0–120 0.870 0.867 0.860 0.95 0.854 0.603
15 A12O3 0–120 1.132 1.153 1.158 1.15 1.173 0.778
16 Nb 0–100 2.885 2.808 2.945 2.73 2.925 1.849
17 Cd 0–100 0.824 0.630 0.462 0.33 0.291 0.265
18 Al 0–100 0.787 0.886 1.059 0.64 1.207 1.118
19 Th 0–100 0.383 0.894 0.473 0.62 0.728 0.535
20 V 0–100 0.811 0.721 0.691 0.79 0.687 0.564
21 In 0–90 1.020 0.771 0.784 0.97 0.806 0.675
22 MgO 0–90 0.481 0.482 0.546 0.58 0.553 0.416
23 ∗Brass 0–85 0.601 0.518 0.516 0.57 0.582 0.417
24 Be 0–80 0.629 0.655 0.597 0.66 0.582 0.454
25 LiF 0–80 0.571 0.482 0.380 0.45 0.350 0.337
26 Pb 0–75 0.559 0.340 0.392 0.53 0.397 0.332
27 Sn 0–60 0.637 0.492 0.410 0.33 0.339 0.307
28 Mg 0–55 0.258 0.349 0.363 0.40 0.579 0.432
29 CsBr 0–55 0.442 0.920 0.386 0.50 0.756 0.591
30 Ca 0–36 0.481 2.593 0.850 0.37 1.325 0.924
31 Tl 0–34 0.501 0.321 0.348 0.50 0.342 0.285
32 NaCl 0–31 0.296 0.124 0.131 0.22 0.292 0.238
33 LiI 0–28 0.378 1.085 0.433 0.38 0.572 0.428
34 LiBr 0–24 0.340 0.316 0.354 0.39 0.354 0.324
35 NaBr 0–24 0.372 0.416 0.351 0.35 0.427 0.375
36 NaI 0–24 0.219 0.624 0.376 0.27 0.565 0.393
37 KF 0–24 1.276 1.175 0.965 0.53 0.775 0.585
38 RbF 0–24 0.347 0.229 0.219 0.24 0.333 0.294
39 LiCl 0–22 0.478 0.388 0.338 0.52 0.307 0.307
40 Li 0–20 0.386 0.412 0.361 0.35 0.650 0.46
41 Na 0–20 0.356 0.830 0.298 0.40 0.850 0.628
42 KI 0–18 0.489 0.355 0.289 0.36 0.363 0.345
43 RbI 0–18 0.389 0.397 0.194 0.19 0.423 0.36
44 RbBr 0–16 0.682 0.327 0.385 0.33 0.314 0.33
45 K 0–14 0.228 1.714 0.365 0.50 1.099 0.838
46 Rb 0–14 0.299 2.467 0.293 0.86 1.181 1.015
47 NaF 0–14 0.604 0.576 0.569 0.61 0.547 0.501
48 RbCl 0–12 0.493 0.338 0.319 0.23 0.242 0.249
49 As 0–10 1.737 1.788 1.710 1.62 1.735 1.676
50 Nd 0–10 1.493 1.544 1.569 1.23 1.584 1.206

Total average error 0.756 0.851 0.681 0.679 0.755 0.603
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Table 2. The experimental data for V0 and fitted parameters B0 and B ′
0 for the mGLJ EOS of

equation (7). The values of the fitted parameters for KD EOS are from [49]; for other EOSs we
refer to [21].

mGLJ mGLJ
V0 V0

No Solids (cm3 mol−1) B0 (GPa) B ′
0 No Solids (cm3 mol−1) B0 (GPa) B ′

0

1 Cu 7.115 141.6 4.6521 26 Pb 18.27 44.431 5.0287
2 Mo 9.387 268.41 3.8482 27 Sn 16.32 43.896 5.2321
3 W 9.550 314.54 3.7284 28 Mg 14.00 34.982 3.7713
4 Zn 9.166 60.636 5.5094 29 CsBr 47.93 22.371 3.7133
5 Ag 10.27 106.15 5.5119 30 Ca 26.13 19.724 2.2963
6 Pt 9.098 281.98 5.0083 31 Tl 17.23 35.598 5.4247
7 Ti 12.01 99.829 3.3042 32 NaCl 27.00 23.836 4.766
8 Ta 10.80 199.67 3.5864 33 LiI 32.80 33.248 2.29
9 Au 10.22 184.82 4.9877 34 LiBr 25.07 22.254 4.3014

10 Pd 8.896 196.13 5.0336 35 NaBr 32.15 21.191 4.0509
11 Zr 14.02 95.48 2.6273 36 NaI 40.84 20.11 3.6335
12 Cr 7.231 190 4.8214 37 KF 23.43 12.03 5.5064
13 Co 6.689 197.8 4.1116 38 RbF 37.44 15.246 4.4735
14 Ni 6.592 188.68 4.665 39 LiCl 20.60 32.97 3.9019
15 A12O3 26.62 250.9 3.8631 40 Li 13.02 10.838 3.2958
16 Nb 10.83 170.17 3.761 41 Na 23.71 6.1984 3.5806
17 Cd 13.00 50.58 5.5586 42 KI 53.29 9.5911 4.2419
18 Al 10.00 77.283 4.3861 43 RbI 59.82 9.5964 4.2867
19 Th 19.79 52.997 3.8543 44 RbBr 49.36 7.791 4.6503
20 V 8.365 159.4 3.6001 45 K 45.62 3.1967 3.2691
21 In 15.73 40.155 5.068 46 Rb 56.08 2.1716 3.3866
22 MgO 8.465 148.15 5.671 47 NaF 15.10 46.648 3.8545
23 ∗Brass 37.82 118.09 4.578 48 RbCl 43.81 5.9335 5.3173
24 Be 4.890 120.88 3.3834 49 As 12.96 37.666 11.569
25 LiF 9.789 63.36 4.5877 50 Nd 20.60 31.801 4.4802

P = B0

B ′
0

[(
V0

V

)B ′
0

− 1

]
. (15)

It can be seen from equation (15) that the Murnaghan EOS just contains a single inverse power
term; such a case is indeed too stiff for most materials, and this can just be applied to low
pressure regions. The second case is that of the Birch EOS:

P = 3B0

2

[(
V0

V

)7/3

−
(

V0

V

)5/3
] [

1 +
3

4
(B ′

0 − 4)

((
V0

V

)2/3

− 1

)]
. (16)

The Birch EOS contains several inverse power terms, its stiffness is far less than that of the
Murnaghan EOS, and it has been widely used in geophysics and high pressure physics. The
limit of the Birch EOS at high pressure is as follows:

P = 9

8
(B ′

0 − 4)B0

(
V0

V

)3

, (V → 0). (17)

The third case is that of the GLJ potential. For simplicity, we only consider our modified mGLJ
EOS. First of all, we know that the exponent of the repulsive term in the mGLJ EOS (7) is
2n = 2B ′

0/3, smaller than that for the Murnaghan EOS (which is B ′
0), and the attractive term

in equation (7) is far stronger than the Murnaghan EOS one (15). So the mGLJ EOS is also far
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Figure 2. As for figure 1, but for Al and Tl.

softer than the Murnaghan EOS. Also, from table 2, we know that for most materials the value
of B ′

0 is approximately 3–5, and the average value is about 4, so 2n � 3 is satisfied for most
materials. This is just the typical value of the mGLJ exponents in the fits to the experimental
data. And the stiffness of the mGLJ EOS (7) is equivalent to that of equation (16) or even
less. Thus we postulate that the applicable compression ranges for the mGLJ EOS should at
least be equivalent to those for the Birch EOS. Otherwise, equation (17) shows that the Birch
EOS (16) gives an incorrect trend for materials with B ′

0 � 4, P tends to −∞ as V tends to
0, but the mGLJ EOS (7) has no such disadvantage. Considering its other merits, the mGLJ
EOS is attractive for many applications.

It should be pointed out that equation (7) is an isothermal equation; after including
the thermal effects in equation (7) as is done in [2, 5, 13–17], one can easily derive all
thermodynamic quantities analytically, and can analytically investigate the variations of these
quantities with temperature, volume or pressure conveniently both for solids and liquids. For
example, Kuchhal et al [5] have used the complicated three-parameter KD EOS [4, 5] to
study the variations of the sound velocity and volume with temperature and pressure. Baonza
et al [8–10] also applied their EOS in studying compressed liquids. Since the Baonza EOS
cannot satisfy the spinodal condition [15], it cannot be used to describe the transition from
compressed liquid to expanded liquid (the same is true for the KD EOS). However, the mGLJ
EOS in equation (7) can overcome this shortcoming. We can replace the KD and Baonza EOSs
by using the two-parameter mGLJ EOS, and all equations in [5, 8–10] can be simplified. In
summary, it is shown that the mGLJ EOS proposed in this letter has almost all four merits of
an ideal EOS, and it is fairly convenient for practical applications.

This work was supported by the Joint Fund of NSFC and CAEP under Grant No 10476007,
the Overseas Scholarship Programme of UESTC.
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